Plasmon-induced doping of graphene.

نویسندگان

  • Zheyu Fang
  • Yumin Wang
  • Zheng Liu
  • Andrea Schlather
  • Pulickel M Ajayan
  • Frank H L Koppens
  • Peter Nordlander
  • Naomi J Halas
چکیده

A metallic nanoantenna, under resonant illumination, injects nonequilibrium hot electrons into a nearby graphene structure, effectively doping the material. A prominent change in carrier density was observed for a plasmonic antenna-patterned graphene sheet following laser excitation, shifting the Dirac point, as determined from the gate-controlled transport characteristic. The effect is due to hot electron generation resulting from the decay of the nanoantenna plasmon following resonant excitation. The effect is highly tunable, depending on the resonant frequency of the plasmonic antenna, as well as on the incident laser power. Hot electron-doped graphene represents a new type of hybrid material that shows great promise for optoelectronic device applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling of plasmon modes in graphene microstructures

Articles you may be interested in Experimental study of plasmon in a grating coupled graphene device with a resonant cavity Appl. Terahertz plasmon-polariton modes in graphene driven by electric field inside a Fabry-Pérot cavity Quenching of plasmons modes in air-exposed graphene-Ru contacts for plasmonic devices Appl. Control of the π plasmon in a single layer graphene by charge doping Appl.

متن کامل

Towards Infrared Plasmonics in Graphene

Graphene plasmons have recently been proposed as an alternative to noble-metal plasmons in the field of photonics, due to its extremely tight light confinement, relatively long-lived collective oscillation, and high tunability via electrostatic gating. Successful support and tuning of graphene plasmonic modes rely on controllable doping of graphene to high carrier densities in nanometer-scale s...

متن کامل

Graphene plasmonics for tunable terahertz metamaterials.

Plasmons describe collective oscillations of electrons. They have a fundamental role in the dynamic responses of electron systems and form the basis of research into optical metamaterials. Plasmons of two-dimensional massless electrons, as present in graphene, show unusual behaviour that enables new tunable plasmonic metamaterials and, potentially, optoelectronic applications in the terahertz f...

متن کامل

Strong enhancement of emission efficiency in GaN light-emitting diodes by plasmon-coupled light amplification of graphene.

Recently, we have demonstrated that excitation of plasmon-polaritons in a mechanically-derived graphene sheet on the top of a ZnO semiconductor considerably enhances its light emission efficiency. If this scheme is also applied to device structures, it is then expected that the energy efficiency of light-emitting diodes (LEDs) increases substantially and the commercial potential will be enormou...

متن کامل

Gated tunability and hybridization of localized plasmons in nanostructured graphene.

Graphene has emerged as an outstanding material for optoelectronic applications due to its high electronic mobility and unique doping capabilities. Here we demonstrate electrical tunability and hybridization of plasmons in graphene nanodisks and nanorings down to 3.7 μm light wavelength. By electrically doping patterned graphene arrays with an applied gate voltage, we observe radical changes in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 6 11  شماره 

صفحات  -

تاریخ انتشار 2012